Elizabeth River PCB TMDL Study: Numerical Modeling Approach

Jian Shen
Virginia Institute of Marine Science
College of William & Mary

May 17, 2011

Pollutant Sources from Watershed

PCB Transport in Estuary

Modeling PCB concentrations in an Estuary

- Use environmental computer model to simulate PCB transport in the estuary
- Environmental computer models are mathematical representations of real-world conditions and are used to estimate environmental events and future changes.

Hydrodynamic Model

Eutrophication Model

Eutrophication (Organic carbon) Model

PCB Model

Model Link Summary

PCB Model Sorption Processes

v = PCB concentration on the solid / carbon (ng/g)C_d =dissolved concentration (ng/L)

$$\nu = K_d \times C_d$$

The relationships between total PCB, dissolved PCB, particulate carbon bound PCB, algal bound PCB, and dissolved carbon bound PCB are:

Dissolved PCB (
$$C_w$$
): $C_w = f_w \times C$

Particulate Carbon pound PCB (C_P^1): $C_P^1 = f_P^1 \times C$

Algae bound PCB (C_P^2): $C_P^2 = f_P^2 \times C$

Dissolved organic carbon bound PCB (C_D): $C_D = f_D \times C$

 f_x = fraction of each component C = total PCB

$$f_{w} + \sum_{i} f_{P}^{i} + f_{D} = 1 \tag{1}$$

$$fw = \frac{Cw}{C} = \frac{\phi}{\phi + \sum_{i} K_{P}^{i} m_{P}^{i} + K_{D} m_{D}}$$
 (2)

$$f_P^i = \frac{C_P^i}{C} = \frac{K_P^i m_P^i}{\phi + \sum_i K_P^i m_P^i + K_D m_D}$$
 (3)

$$f_D = \frac{C_D}{C} = \frac{K_D m_D}{\phi + \sum_i K_P^i m_P^i + K_D m_D}$$
 (4)

Where m_P^1 , m_P^2 , m_D are particulate organic carbon, particulate algal carbon, and dissolved organic carbon. K_P^1 , K_P^2 , and K_D denote the partition coefficients, respectively for three carbon species.

Dissolved PCB (C_w): $C_w = f_w \times C$

Particulate Carbon pound PCB (C_p^1): $C_p^1 = f_p^1 \times C$

Algae bound PCB (C_P^2) : $C_P^2 = f_P^2 \times C$

Dissolved organic carbon bound PCB (C_D): $C_D = f_D \times C$

PCB Transport Model Equation

$$\partial_{t} \P_{x} m_{y} HC \rightarrow \frac{1}{m_{x} m_{y}} \partial_{x} \P_{y} HuC \rightarrow \frac{1}{m_{x} m_{y}} \partial_{y} \P_{x} HvC \rightarrow \partial_{x} \P_{x} m_{y} wC$$

$$-\partial_{x} \left(m_{x} m_{y} \sum_{i} w_{s}^{i} f_{p}^{i} C \right) = \partial_{z} \left(m_{x} m_{y} \frac{A_{b}}{H} \partial_{z} C \right) - \P_{x} m_{y} HyC$$
Settling Diffusion

Where H is water depth, C is total PCB concentration, A_b is eddy diffusivity, and w_s^i (i=1,2) are settling velocities associated with particulate organic carbon and algal organic carbon, γ is decay constant, u, v, w are velocity at x-, y-, and z- directions, m_x and m_v are scale factors of the horizontal coordinates.

The boundary condition at the water column sediment interface, z = 0, is:

$$\begin{split} &-\frac{A_b}{H}\partial_z C - \sum_i w_s^i f_s^i C = \\ &= \sum_i \left[\max \left(\frac{J_P^i f_P^i}{m_P^i}, 0 \right) C \right]_S + \sum_i \left[\min \left(\frac{J_P^i f_P^i}{m_P^i}, 0 \right) C \right]_W - q_{dif} \left(\frac{f_w + f_D}{\phi} C \right)_W + q_{dif} \left(\frac{f_w + f_D}{\phi_s} C \right)_S \right]_S \end{split}$$

Where J_P^i (i=1,2) are POC and algal carbon fluxes between sediment bed, and water column (mass per unit area per second), defined as positive from the bed, ϕ and ϕ_s are porosities in water column and sediment. The subscripts 'w' and 's' denote water column and sediment, respectively, and q_{dif} is diffusion velocity.

The volatilization which occurs at the surface depends on the mass transfer coefficient at the air-water interface and the concentration of PCB in the water column. The boundary condition at the water column and air interface, z=1, is: (Bamford, et al., 2002)

$$-\frac{A_b}{H}\partial_z C - \sum_i w_s^i f_s^i C = \frac{K_V}{\Delta Z} \left[f_w C - \frac{C_a}{K_{H'}} \right]$$

Where K_v is the volatilization mass transfer coefficient (L/T), ΔZ is the thickness of the first layer near the surface, C_a is the vapor phase PCB concentration in air (M/L³) and K_H is the dimensionless, temperature-corrected Henry's law constant.

Bottom Sediment Model Equation

$$\partial_t (BC)_T = -\gamma (BC)_T$$

$$-\sum_{i} \left[\max \left(\frac{J_{p}^{i} f_{p}^{i}}{B m_{p}^{i}}, 0 \right) B C \right]_{T+} - \sum_{i} \left[\min \left(\frac{J_{p}^{i} f_{p}^{i}}{m_{p}^{i}}, 0 \right) C \right]_{W} - \sum_{i} \left[\min \left(\frac{J_{p}^{i} f_{p}^{i}}{B m_{p}^{i}}, 0 \right) B C \right]_{T-} \right]_{T-}$$

Lost due to re-suspension Settling from water column Settling to deep sediment layer

$$+ q_{dif} \left(\frac{f_w + f_D}{\phi} C \right)_W - q_{dif} \left(\frac{f_w + f_D}{\phi_s} C \right)_T$$

Diffusion between water column and sediment

Where B is the thickness of the sediment layer.

Data Needed for Hydrodynamic Model Calibration

- Tide
 - use NOAA observation data at Sewells Point
- Salinity at open boundary
 - use the Chesapeake Bay model output (available from 1997-2007)
- Flow data
 - use USGS upstream daily flow (Appomattox River USGS02041650 and Richmond station USGS37500)
- Meteorological forcing data
 - use NOAA data at Sewells and Gloucester Point
 - wind, atmospheric pressure
 - dry & wet temperature
 - cloud cover and solar radiation

Link James River Model to the Bay Model

Data Needed for Eutrophication Model Calibration

- Point source loading
 - Chesapeake Bay program/DEQ
- James River mouth open boundary
 - Monthly observations
- Nonpoint source loading
 - Chesapeake Bay Phase V watershed model output, 1980-2005
 - Flow
 - Nitrogen
 - Phosphorus
 - Carbon
 - Algae

Data Needed for PCB Model Calibration

- Bottom sediment PCB data
 - use for initial sediment condition (sediment study)
- Upstream PCB data
 - estimate upstream PCB inflow
- Loading from contaminated sides
- Storm water data?
- Point source data?
- Nonpoint source loading (background, unknown loadings)
 - estimate based on event driven concentration and flow
- Atmospheric deposition
 - Historical observations/new observations
- Model calibration data
 - Collect short-term data covering large area
 - Intensive survey data
 - monthly or bimonthly PCB data for a year at 2-3 stations (i.e., 2-JMS074.44, 2-ELI04.79)

Next Steps...

- Data collection
- Nonpoint source estimation
- Pollutant source estimation
- Model setup
- Hydrodynamic model calibration
- Eutrophication model calibration
- PCB Model calibration procedure

Questions / Discussion

DEQ PCB TMDL website:

http://www.deq.virginia.gov/tmdl/pcb.html

Contacts:

Mark Richards

Mark.Richards@deq.virginia.gov

Central Office DEQ (804) 527-4392

Jennifer Howell

Jennifer.Howell@deq.virginia.gov Tidewater Regional Office, DEQ (757)518-2111